Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Oncol ; 13: 1172314, 2023.
Article in English | MEDLINE | ID: covidwho-20238493

ABSTRACT

Growing evidence supports the critical role of tumour microenvironment (TME) in tumour progression, metastases, and treatment response. However, the in-situ interplay among various TME components, particularly between immune and tumour cells, are largely unknown, hindering our understanding of how tumour progresses and responds to treatment. While mainstream single-cell omics techniques allow deep, single-cell phenotyping, they lack crucial spatial information for in-situ cell-cell interaction analysis. On the other hand, tissue-based approaches such as hematoxylin and eosin and chromogenic immunohistochemistry staining can preserve the spatial information of TME components but are limited by their low-content staining. High-content spatial profiling technologies, termed spatial omics, have greatly advanced in the past decades to overcome these limitations. These technologies continue to emerge to include more molecular features (RNAs and/or proteins) and to enhance spatial resolution, opening new opportunities for discovering novel biological knowledge, biomarkers, and therapeutic targets. These advancements also spur the need for novel computational methods to mine useful TME insights from the increasing data complexity confounded by high molecular features and spatial resolution. In this review, we present state-of-the-art spatial omics technologies, their applications, major strengths, and limitations as well as the role of artificial intelligence (AI) in TME studies.

2.
Exp Hematol Oncol ; 11(1): 60, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2038944

ABSTRACT

Targeting B-cell receptor signalling using Bruton tyrosine kinase (BTK) inhibitors (BTKis) has become a highly successful treatment modality for B-cell malignancies, especially for chronic lymphocytic leukaemia. However, long-term administration of BTKis can be complicated by adverse on- and/or off-target effects in particular cell types. BTK is widely expressed in cells of haematopoietic origin, which are pivotal components of the tumour microenvironment. BTKis, thus, show broad immunomodulatory effects on various non-B immune cell subsets by inhibiting specific immune receptors, including T-cell receptor and Toll-like receptors. Furthermore, due to the off-target inhibition of other kinases, such as IL-2-inducible T-cell kinase, epidermal growth factor receptor, and the TEC and SRC family kinases, BTKis have additional distinct effects on T cells, natural killer cells, platelets, cardiomyocytes, and other cell types. Such mechanisms of action might contribute to the exceptionally high clinical efficacy as well as the unique profiles of adverse effects, including infections, bleeding, and atrial fibrillation, observed during BTKi administration. However, the immune defects and related infections caused by BTKis have not received sufficient attention in clinical studies till date. The broad involvement of BTK in immunological pathways provides a rationale to combine BTKis with specific immunotherapies, such as immune checkpoint inhibitor or chimeric antigen receptor-T-cell therapy, for the treatment of relapsed or refractory diseases. This review discusses and summarises the above-mentioned issues as a reference for clinicians and researchers.

3.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1934121

ABSTRACT

Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Killer Cells, Natural , Neoplasms/therapy , T-Lymphocytes
4.
Cells ; 10(10)2021 10 09.
Article in English | MEDLINE | ID: covidwho-1480599

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) constitute a plastic and heterogeneous cell population among immune cells within the tumour microenvironment (TME) that support cancer progression and resistance to therapy. During tumour progression, cancer cells modify their metabolism to sustain an increased energy demand to cope with uncontrolled cell proliferation and differentiation. This metabolic reprogramming of cancer establishes competition for nutrients between tumour cells and leukocytes and most importantly, among tumour-infiltrating immune cells. Thus, MDSCs that have emerged as one of the most decisive immune regulators of TME exhibit an increase in glycolysis and fatty acid metabolism and also an upregulation of enzymes that catabolise essential metabolites. This complex metabolic network is not only crucial for MDSC survival and accumulation in the TME but also for enhancing immunosuppressive functions toward immune effectors. In this review, we discuss recent progress in the field of MDSC-associated metabolic pathways that could facilitate therapeutic targeting of these cells during cancer progression.


Subject(s)
Immunosuppression Therapy , Metabolic Networks and Pathways , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment/immunology , Animals , Humans , Molecular Targeted Therapy , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
5.
J Pathol ; 254(4): 303-306, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258101

ABSTRACT

The 2021 Annual Review Issue of The Journal of Pathology contains 14 invited reviews on current research areas of particular importance in pathology. The subjects included here reflect the broad range of interests covered by the journal, including both basic and applied research fields but always with the aim of improving our understanding of human disease. This year, our reviews encompass the huge impact of the COVID-19 pandemic, the development and application of biomarkers for immune checkpoint inhibitors, recent advances in multiplexing antigen/nucleic acid detection in situ, the use of genomics to aid drug discovery, organoid methodologies in research, the microbiome in cancer, the role of macrophage-stroma interactions in fibrosis, and TGF-ß as a driver of fibrosis in multiple pathologies. Other reviews revisit the p53 field and its lack of clinical impact to date, dissect the genetics of mitochondrial diseases, summarise the cells of origin and genetics of sarcomagenesis, provide new data on the role of TRIM28 in tumour predisposition, review our current understanding of cancer stem cell niches, and the function and regulation of p63. The reviews are authored by experts in their field from academia and industry, and provide comprehensive updates of the chosen areas, in which there has been considerable recent progress. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
COVID-19/genetics , COVID-19/virology , Neoplasms/pathology , SARS-CoV-2/pathogenicity , COVID-19/pathology , Genomics/methods , Humans , Neoplasms/complications , Neoplasms/genetics , Organoids/pathology , United Kingdom
6.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: covidwho-1004733

ABSTRACT

This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3ß, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven 'backward' conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3ß by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.


Subject(s)
Neoplasms/pathology , Tumor Microenvironment , Acetyl Coenzyme A/metabolism , Age Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Computational Biology , Humans , Immunomodulation , Melatonin/metabolism , Metabolic Networks and Pathways , Mitochondria/metabolism , Models, Biological , Neoplasms/etiology , Neoplasms/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Sirtuins/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
7.
Int J Mol Sci ; 21(21)2020 Oct 26.
Article in English | MEDLINE | ID: covidwho-895371

ABSTRACT

Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.


Subject(s)
Aging/metabolism , Coronavirus Infections/metabolism , Interleukin-6/metabolism , Neoplasms/metabolism , Pneumonia, Viral/metabolism , Aging/pathology , Animals , COVID-19 , Coronavirus Infections/pathology , Humans , Interleukin-6/genetics , Neoplasms/pathology , Pandemics , Pneumonia, Viral/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL